

Software Engineering Project
Project Group 4

Technical Documentation

The SyncBox Project Team:

Arpit Agarwal - 11010107 B Sri Harsha – 11010110

B.N.Karthik – 11010114 Harsha S. Tirmala – 11010120

J. Surendranath Reddy – 11010123 K. Dinikar Reddy – 11010127

Prudhvi Raj Chowhan – 11010131 Neha Damadya – 11010143

Manikanta Reddy – 11010148 Rachit Kumar – 11010154

Rahul R. Huilgol - 11010156 Rakshita Jain – 11010157

Sachin Aglave – 11010160 Shivam Kumar – 11010164

Sparsh Kumar Sinha – 11010166 Venkat Abhinav – 11010169

Vishal Anand – 11010170 Shyamal Kejriwal – 11010174

Shobhit Chaurasia – 11010179

 Preface

The document herein was produced by the SyncBox Team, a
group of highly enthusiast Computer Science undergraduates of the
Indian Institute of Technology Guwahati. This document is intended to
provide a technical over-view of this project, SyncBox, a web-based file-
sharing portal with the provision of auto-synchronization of files as the
user is on the move.

This project was developed mainly in the timespan of ONE month,
during March 15, 2013-April 17, 2013. Developed under the guidance of
Prof. (Dr.) Pradeep Kumar Das, this group could visualize the importance
of working as synchronized chunks of software development units and
could complete this project, while enjoying the challenges that crept up.
There are no restrictions on the reproduction, distribution, translation or
use of this document. However, incorporation of this document, in part
or in whole, into any other document does not convey or represent an
endorsement of any kind by the SyncBox Team.

The SyncBox Team

2nd Year,

Department of Computer Science and Technology,

Indian Institute of Technology Guwahati

Guwahati – 781039,

India

Date – 17th April, 2013

Introduction

This is an introduction to the technical descriptions of the Project on
Web-Based-File-Hosting-Server. This Project has been developed to
construct a web-portal to come up with these functionalities:

 User Authentication

 File upload

 Directory Upload

 Directory Synchronization

 Complete web based file browser with complete details of files.

 Allow file sharing: specific/ group/ public.

 Allow to open basic file types doc, docx, xls, xlsx, ppsx, images
with slide show, text and multimedia in browser.

 Provide file encryption

 File compression

 User to user and admin - user communication

 Use proper database for storing all relevant data.

The ensuing literature dictates some of the technical aspects of this
open-source software that we have developed for the user.

1.0 Website

1.1 Framework Used

We have used the Django1 Framework to build up the website
pertaining to this project. For the uninitiated, Django is a free and open
source web application framework, written in Python, which follows the
model-view-controller (MVC) architectural pattern. Since this project
uses intensive sqlite3 database use, Django facilitates us with the ease of
access in such scenarios.

1
 www.djangoproject.com/

For the basic aesthetic look of the website, we have used the
Twitter Bootstrap2 CSS package to avoid re-defining the classes of the
CSS classes for the different subsections of the web-site.

1.2 Purpose

Although there exists a separate programme to run in case one
has to synchronize the files, still we have come up with the website in
case one would like to view it from the browser, while browsing for
some other stuff. Although it has an added feature of signing up, which
is not present in the executable version.

1.3 Scope

We can allow for the upload of files directly to the user’s account,
and even the deletion of the file(s). When this particular user
connects to the server from the personal computer, these files
would be synchronized to that particular computer and thus the
user who might or might not have the PC available to
himself/herself, would still be able to properly store the files as
per the needs of the hour.

2.0 Installation and Authentication on First-Run

2.1 Installation of Dependencies

To use synchronizing feature, a few packages are required:
(i). Unison3
(ii). iNotify4 Tools
(iii). Open SSH Client5

These need to be installed at the first execution of the software.
So, we are providing an app to ensure these dependencies are
installed after the user provides us with his/her system password.
Along with these dependencies, an SSH key is also generated and
is stored in the appropriate text file, which needs to be sent to the

2
 twitter.github.io/bootstrap/

3
 www.unison.org.uk

4
 en.wikipedia.org/wiki/Inotify

5
 en.wikipedia.org/wiki/Secure_Shell

computer where the server script is running so as to establish a
connection.
 If the packages fail to install for some reasons, then the user has
to install them manually using the instructions provided in app.

3.0 FILE SYNCING APPLICATION

3.1 Framework Used

PyQt-4 framework has been used to prepare the GUI for the
application.

3.2 Purpose

 This application serves the following essential functions:

 User login username/password

 Proxy settings for the file syncing

 Proxy username / password

 File path/folder select to sync

 Start Syncing

 Error messages

 Auto run on startup

3.3 FUNCTIONS

Username can be entered as a string input to the following
function :

self.lineEdit = QtGui.QLineEdit(self.frame) #to take username
 self.lineEdit.setGeometry(QtCore.QRect(100, 26, 201, 31))
 self.lineEdit.setObjectName(_fromUtf8("lineEdit"))

Password can be entered as a string input to the following
function :

self.lineEdit_2 = QtGui.QLineEdit(self.frame)#to take password
 self.lineEdit_2.setGeometry(QtCore.QRect(100, 70, 201, 31))
 self.lineEdit_2.setEchoMode(QtGui.QLineEdit.Password)
 self.lineEdit_2.setObjectName(_fromUtf8("lineEdit_2"))

proxy username / password taken as strings :

self.lineEdit_3 = QtGui.QLineEdit(self.frame_2) #to take proxy/
username
 self.lineEdit_3.setGeometry(QtCore.QRect(100, 26, 201, 31))
 self.lineEdit_3.setObjectName(_fromUtf8("lineEdit_3"))
 self.lineEdit_4 = QtGui.QLineEdit(self.frame_2) #to take proxy
password
 self.lineEdit_4.setGeometry(QtCore.QRect(100, 70, 201, 31))
 self.lineEdit_4.setEchoMode(QtGui.QLineEdit.Password)

The following code snippet executes the login function :

def login(self): #login function
 self.textEdit.setText("")
 try:
 f=open('./id_rsa.pub','r')
 z=f.read()
 z=z[:-1]
 except IOError:
 self.textEdit.setText("Install ssh server")

 x=str(self.lineEdit.text())
 y=str(self.lineEdit_2.text())

3.4 SCOPE

User can login via this application to the username/password given at
the website. He can then add the paths of the file/folders that are to be
added to his/her account on the file sharing server . Common errors by
the users that have been accounted for include :

 If user’s account has been deactivated , upon trying to log in an
error message crops up as follows "Account is disabled".

 If wrong username and/or password are used then upon pressing
the login button this message is displayed "Incorrect query".

 If no file path is selected then the following error message is
shown : "Please select a directory to sync" .

 If unison file synchronizer is not installed an error "Error:Install
unison for file sharing" .

3.5 UNISON

Unison is a file-synchronization tool for Unix and Windows. It allows two
replicas of a collection of files and directories to be stored on different
hosts (or different disks on the same host), modified separately, and
then brought up to date by propagating the changes in each replica to
the other.
Unison works across platforms, allowing you to synchronize a Windows
laptop with a Unix server, for example. Unlike simple mirroring or
backup utilities, Unison can deal with updates to both replicas of a
distributed directory structure. Updates that do not conflict are
propagated automatically. Conflicting updates are detected and
displayed. Unison is resilient to failure. It is careful to leave the replicas
and its own private structures in a sensible state at all times, even in
case of abnormal termination or communication failures.
Unison works between any pair of machines connected to the internet,
communicating over either a direct socket link or tunneling over an
encrypted ssh connection. It is careful with network bandwidth, and
runs well over slow links such as PPP connections. Transfers of small
updates to large files are optimized using a compression protocol similar
to rsync. Unlike a distributed filesystem, Unison is a user-level program:
there is no need to modify the kernel or to have superuser privileges on
either host.

Unison has a clear and precise specification. .Unison is free; full source
code is available under the GNU Public License.

3.6 Inotifywait

Inotifywait “waits” for changes to files using inotify which is a linux
system call. It efficiently waits for changes to files using linux’s inotify
interface. It is suitable for waiting for changes to files from shell scripts
.It can either exit when an event occurs or continually execute and
output events as they occur.

WORKING:

 Once the user logs in with the given credentials, he is allowed to
choose a folder which will be synced. These credentials are saved
in .ssh folder so that the user doesn’t have to enter them again
and again.

 Once the directory has been chosen, the user can start syncing

 Once start sync is chosen, we run the script main.sh

 The preferences for syncing are stored in .unison folder in test.prf

 When syncing starts, main.sh runs. This starts syncing by running
‘unison test’. Then we use inotifywait to watch for changes in the
given folder. In case of changes to the folder we run unison test
again.

 The unique point is we don’t copy the whole folder being
synchronized, we only send those files which have changed

SERVER SIDE WORKING

 The folder corresponding to the user on the server directory has
been changed by the app on client side.

 Once this has been done what remains is to add the list of files
changed to the database

 We do this by running a script addtodb.sh. This

4.0 PROCESS-FLOW

 First install the dependencies
 ex: sudo apt-get install unison

openssh-client (on client)
 openssh-server (on server)
 unison (on client and server)
 inotify-tools (on client)

 Now run the 'ssh-keygen' to generate the public and private keys of the
client and stores them in the .ssh folder on the client side. When the
user tries to login for the first time using the application then the keys

are passed along with the username/password through ssh and are
added to the ‘./.ssh/authorized_keys .
Send public key:
 Send the contents of './.ssh/id_rsa.pub' on
client to server ; The server receives this file and appends it to
'./.ssh/authorized_keys'
then write the next four lines to the file './.unison/test.prf'

root = ssh://SERVERHOST:PORT/SyncBox/$username/
root = $user-directory
batch = true
auto = true

Normal Run:
 On startup of computer run './main.sh' - put this script wherever
you want to and run it accordingly. './main.sh' runs unison and watches
the folder (mentioned on the login page of the application while logging
in for changes in which case unison is run again and so on….

5.0 REFERENCES

 Unison :
 http://www.cis.upenn.edu/~bcpierce/unison/index.html

 Inotifywait :
http://linux.die.net/man/1/inotifywait

 Django :
https://docs.djangoproject.com/en/1.5/

 Bootstrap :
http://twitter.github.io/bootstrap/

 SSH :
http://www.openssh.org/

http://www.cis.upenn.edu/~bcpierce/unison/index.html
http://linux.die.net/man/1/inotifywait
https://docs.djangoproject.com/en/1.5/
http://twitter.github.io/bootstrap/
http://www.openssh.org/

